Abstract
An iterative strategy to the 1,3-polyol motif is described. The
use of the catalytic asymmetric Overman esterification for the construction
of all stereogenic centers is broadly examined as are the sequences
to extend the developing polyol chain. The iterative strategies
are applied to the total syntheses of rugulactone and polyrhacitides
A and B.
1 Introduction
2 Results and Discussion
2.1 Chain Elongation via RCM (Cycle A)
2.2 Total Synthesis of Rugulactone
2.3 Chain Elongation via Ando Olefination (Cycle B) and Total Syntheses
of Polyrhacitides A and B
2.4 Useful Variants
3 Conclusions
Key words
polyols - palladium - catalysis - natural
products - esters
References
<A NAME="RT78511SS-1A">1a </A>
Hertweck C.
Angew. Chem. Int. Ed.
2009,
48:
4688
<A NAME="RT78511SS-1B">1b </A>
O’Hagan D.
Nat. Prod. Rep.
1995,
12:
1
<A NAME="RT78511SS-1C">1c </A>
Staunton J.
Weissman KJ.
Nat. Prod. Rep.
2001,
18:
380
<A NAME="RT78511SS-1D">1d </A>
O’Hagan D.
The Polyketide Metabolites
Ellis Horwood;
Chichester:
1991.
For selected works, see:
<A NAME="RT78511SS-2A">2a </A>
Walsh CT.
Science
2004,
303:
1805
<A NAME="RT78511SS-2B">2b </A>
Fischbach MA.
Walsh CT.
Chem.
Rev.
2006,
106:
3468
<A NAME="RT78511SS-2C">2c </A>
Staunton J.
Angew.
Chem. Int. Ed.
1991,
30:
1302
<A NAME="RT78511SS-2D">2d </A>
Khosla C.
J.
Org. Chem.
2009,
74:
6416
<A NAME="RT78511SS-2E">2e </A>
Hertweck C.
Jarvis AP.
Xiang L.
Moore BS.
Oldham NJ.
ChemBioChem
2001,
2:
784
For selected reviews on the synthesis
of 1,3-polyols, see:
<A NAME="RT78511SS-3A">3a </A>
Miller AK.
Trauner D.
Synlett
2006,
2295
<A NAME="RT78511SS-3B">3b </A>
Schetter B.
Mahrwald R.
Angew. Chem. Int. Ed.
2006,
45:
7506
<A NAME="RT78511SS-3C">3c </A>
Norcross RD.
Paterson I.
Chem. Rev.
1995,
95:
2041
<A NAME="RT78511SS-3D">3d </A>
Rychnovsky SD.
Chem. Rev.
1995,
95:
2021
<A NAME="RT78511SS-3E">3e </A>
Bode SE.
Wolberg M.
Müller M.
Synthesis
2006,
557
<A NAME="RT78511SS-3F">3f </A>
Schneider C.
Angew.
Chem. Int. Ed.
1998,
37:
1375
<A NAME="RT78511SS-3G">3g </A>
Oishi T.
Nakata T.
Synthesis
1990,
635
For selected examples on substrate-controlled
asymmetric induction, see:
<A NAME="RT78511SS-4A">4a </A>
Shang S.
Iwadare H.
Macks DE.
Ambrosini LM.
Tan DS.
Org. Lett.
2007,
9:
1895
<A NAME="RT78511SS-4B">4b </A>
Körber K.
Risch P.
Brückner R.
Synlett
2005,
2905
<A NAME="RT78511SS-4C">4c </A>
Bode JW.
Fraefel N.
Muri D.
Carreira EM.
Angew. Chem. Int.
Ed.
2001,
40:
2082
<A NAME="RT78511SS-4D">4d </A>
Paterson I.
Donghi M.
Gerlach K.
Angew.
Chem. Int. Ed.
2000,
39:
3315
<A NAME="RT78511SS-4E">4e </A>
Misske AM.
Hoffmann HMR.
Chem.
Eur. J.
2000,
6:
3313
<A NAME="RT78511SS-4F">4f </A>
Enders D.
Hundertmark T.
Tetrahedron Lett.
1999,
40:
4169
<A NAME="RT78511SS-4G">4g </A>
Reggelin M.
Brenig V.
Welcker R.
Tetrahedron
Lett.
1998,
39:
4801
<A NAME="RT78511SS-4H">4h </A>
Evans DA.
Chapman KT.
Carreira EM.
J. Am. Chem. Soc.
1988,
110:
3560
For recent examples on the synthesis
of 1,3-diols, see inter alia:
<A NAME="RT78511SS-5A">5a </A>
Herrmann AT.
Saito T.
Stivala CE.
Tom J.
Zakarian A.
J. Am. Chem. Soc.
2010,
132:
5962
<A NAME="RT78511SS-5B">5b </A>
Gnanadesikan V.
Horiuchi Y.
Ohshima T.
Shibasaki M.
J. Am. Chem. Soc.
2004,
126:
7782
<A NAME="RT78511SS-5C">5c </A>
Davies HML.
Hedley SJ.
Bohall BR.
J. Org. Chem.
2005,
70:
10737
<A NAME="RT78511SS-5D">5d </A>
Rychnovsky SD.
Powell NA.
J.
Org. Chem.
1997,
62:
6460
<A NAME="RT78511SS-6">6 </A> For a leading review, see:
Smith AB.
Adams CM.
Acc.
Chem. Res.
2004,
37:
365
<A NAME="RT78511SS-7">7 </A>
Brown HC.
Jadhav PK.
J. Am. Chem. Soc.
1983,
105:
2092
For selected examples on iterative
allylboronation in total synthesis, see:
<A NAME="RT78511SS-8A">8a </A>
Nicolaou KC.
Nold AL.
Milburn RR.
Schindler CS.
Angew.
Chem. Int. Ed.
2006,
45:
6527
<A NAME="RT78511SS-8B">8b </A>
García-Fortanet J.
Murga J.
Carda M.
Marco JA.
Org. Lett.
2003,
5:
1447
<A NAME="RT78511SS-8C">8c </A>
Fuwa H.
Naito S.
Goto T.
Sasaki M.
Angew. Chem. Int. Ed.
2008,
47:
4737
<A NAME="RT78511SS-8D">8d </A>
Mitton-Fry MJ.
Cullen AJ.
Sammakia T.
Angew. Chem. Int. Ed.
2007,
46:
1066
For other examples on allylboronation,
see:
<A NAME="RT78511SS-9A">9a </A>
Schreiber SL.
Goulet MT.
J.
Am. Chem. Soc.
1987,
109:
8120
<A NAME="RT78511SS-9B">9b </A>
Paterson I.
Wallace DJ.
Gibson KR.
Tetrahedron Lett.
1997,
38:
8911
<A NAME="RT78511SS-9C">9c </A>
Smith AB.
Minbiole KP.
Verhoest PR.
Schelhaas M.
J.
Am. Chem. Soc.
2001,
123:
10942
<A NAME="RT78511SS-9D">9d </A>
Nicolaou KC.
Nold AL.
Milburn RR.
Schindler CS.
Kole KP.
Yamaguchi J.
J.
Am. Chem. Soc.
2007,
129:
1760
<A NAME="RT78511SS-9E">9e </A>
Nicolaou KC.
Kim DW.
Baati R.
O’Brate A.
Giannakakou P.
Chem. Eur. J.
2003,
9:
6177
<A NAME="RT78511SS-9F">9f </A>
Paterson I.
Coster MJ.
Chen DY.-K.
Gibson KR.
Wallace DJ.
Org. Biomol. Chem.
2005,
3:
2410
<A NAME="RT78511SS-9G">9g </A>
Dreher SD.
Leighton JL.
J.
Am. Chem. Soc.
2001,
123:
341
<A NAME="RT78511SS-9H">9h </A>
Barrett AGM.
Braddock DC.
de Koning PD.
White AJP.
Williams DJ.
J.
Org. Chem.
2000,
65:
375
<A NAME="RT78511SS-9I">9i </A>
Schneider C.
Rehfeuter M.
Chem. Eur. J.
1999,
5:
2850
<A NAME="RT78511SS-9J">9j </A>
Hoffmann RW.
Stürmer R.
Synlett
1990,
759
<A NAME="RT78511SS-10A">10a </A>
García AB.
Leßmann T.
Umarye JD.
Mamane V.
Sommer S.
Waldmann H.
Chem. Commun.
2006,
3868
<A NAME="RT78511SS-10B">10b </A>
Umarye JD.
Leßmann T.
García AB.
Mamane V.
Sommer S.
Waldmann H.
Chem. Eur.
J.
2007,
13:
3305
<A NAME="RT78511SS-11">11 </A>
Hafner A.
Duthaler RO.
Marti R.
Rib G.
Rothe-Streit P.
Schwarzenbach F.
J. Am. Chem. Soc.
1992,
114:
2321
For selected examples on iterative
allyltitanation, see:
<A NAME="RT78511SS-12A">12a </A>
BouzBouz S.
Cossy J.
Org. Lett.
2000,
2:
501
<A NAME="RT78511SS-12B">12b </A>
BouzBouz S.
Cossy J.
Org. Lett.
2004,
6:
3469
<A NAME="RT78511SS-12C">12c </A>
Allais F.
Louvel M.-C.
Cossy J.
Synlett
2007,
451
<A NAME="RT78511SS-12D">12d </A>
Amans D.
Bellosta V.
Cossy J.
Org.
Lett.
2007,
9:
1453
<A NAME="RT78511SS-12E">12e </A>
Ferrié L.
Boulard L.
Pradaux F.
BouzBouz S.
Reymond S.
Capdevielle P.
Cossy J.
J. Org. Chem.
2008,
73:
1864
<A NAME="RT78511SS-12F">12f </A>
Allais F.
Cossy J.
Org. Lett.
2006,
8:
3655
<A NAME="RT78511SS-12G">12g </A>
BouzBouz S.
Cossy J.
Tetrahedron Lett.
2000,
41:
3363
For further iterative asymmetric
allylmetalation sequences, see inter alia:
<A NAME="RT78511SS-13A">13a </A>
Guo H.
Mortenson MS.
O’Doherty GA.
Org. Lett.
2008,
10:
3149
<A NAME="RT78511SS-13B">13b </A>
Keck GE.
Truong AP.
Org.
Lett.
2005,
7:
2153
<A NAME="RT78511SS-13C">13c </A>
Keck GE.
Savin KA.
Weglarz MA.
Cressman ENK.
Tetrahedron
Lett.
1996,
37:
3291
<A NAME="RT78511SS-13D">13d </A>
Knochel P.
Brieden W.
Rozema MJ.
Eisenberg C.
Tetrahedron Lett.
1993,
34:
5881
<A NAME="RT78511SS-14">14 </A>
Masamune S.
Choy W.
Peterson JS.
Sita LS.
Angew. Chem. Int. Ed.
1985,
24:
1
<A NAME="RT78511SS-15A">15a </A>
Ma P.
Martin S.
Masamune S.
Sharpless KB.
Viti SM.
J. Org. Chem.
1982,
47:
1378
<A NAME="RT78511SS-15B">15b </A>
Katsuki T.
Lee AWM.
Ma P.
Martin VS.
Masamune S.
Sharpless KB.
Tuddenham D.
Walker FJ.
J. Org. Chem.
1982,
47:
1373
<A NAME="RT78511SS-15C">15c </A>
Nicolaou KC.
Daines RA.
Uenishi J.
Li WS.
Papahatjis DP.
Chakraborty TK.
J.
Am. Chem. Soc.
1988,
110:
4672
<A NAME="RT78511SS-16A">16a </A>
Tosaki S.-y.
Horiuchi Y.
Nemoto T.
Ohshima T.
Shibasaki M.
Chem. Eur. J.
2004,
10:
1527
<A NAME="RT78511SS-16B">16b </A>
Gerber-Lemaire S.
Vogel P.
Eur. J. Org.
Chem.
2003,
2959
<A NAME="RT78511SS-16C">16c </A>
Burova SA.
McDonald FE.
J.
Am. Chem. Soc.
2002,
124:
8188
<A NAME="RT78511SS-17">17 </A>
Kondekar NB.
Kumar P.
Org. Lett.
2009,
11:
2611
<A NAME="RT78511SS-18">18 </A>
Zhang Z.
Aubry S.
Kishi Y.
Org.
Lett.
2008,
10:
3077
<A NAME="RT78511SS-19">19 </A>
Iwata M.
Yazaki R.
Suzuki Y.
Kumagai N.
Shibasaki M.
J.
Am. Chem. Soc.
2009,
131:
18244
<A NAME="RT78511SS-20A">20a </A>
Kim IS.
Ngai M.-Y.
Krische MJ.
J. Am. Chem. Soc.
2008,
130:
6340
<A NAME="RT78511SS-20B">20b </A>
Kim IS.
Ngai M.-Y.
Krische MJ.
J. Am. Chem. Soc.
2008,
130:
14891
<A NAME="RT78511SS-21A">21a </A>
Lu Y.
Kim IS.
Hassan A.
Del Valle DJ.
Krische MJ.
Angew.
Chem. Int. Ed.
2009,
48:
5018
<A NAME="RT78511SS-21B">21b </A>
Hassan A.
Krische MJ.
Org. Lett.
2009,
11:
3112
<A NAME="RT78511SS-21C">21c </A>
Han SB.
Hassan A.
Kim IS.
Krische MJ.
J.
Am. Chem. Soc.
2010,
132:
15559
<A NAME="RT78511SS-22">22 </A>
Hartmann E.
Oestreich M.
Angew. Chem. Int. Ed.
2010,
49:
6195
<A NAME="RT78511SS-23A">23a </A>
Albert BJ.
Yamamoto H.
Angew.
Chem. Int. Ed.
2010,
49:
2747
<A NAME="RT78511SS-23B">23b </A>
Albert BJ.
Yamaoka Y.
Yamamoto H.
Angew. Chem. Int. Ed.
2011,
50:
2610
<A NAME="RT78511SS-24">24 </A>
Binder JT.
Kirsch SF.
Chem. Commun.
2007,
4164
<A NAME="RT78511SS-25A">25a </A>
Kirsch SF.
Overman LE.
J. Am. Chem. Soc.
2005,
127:
2866
<A NAME="RT78511SS-25B">25b </A>
Cannon J.
Kirsch SF.
Overman LE.
Sneddon H.
J. Am. Chem.
Soc.
2010,
132:
15192
<A NAME="RT78511SS-25C">25c </A>
Cannon J.
Kirsch SF.
Overman LE.
J. Am. Chem. Soc.
2010,
132:
15185
<A NAME="RT78511SS-25D">25d </A>
Kirsch SF.
Overman LE.
White NS.
Org. Lett.
2007,
9:
911
<A NAME="RT78511SS-26A">26a </A>
Anderson CE.
Kirsch SF.
Overman LE.
Richards CJ.
Watson MP.
Org.
Synth.
2007,
84:
148
<A NAME="RT78511SS-26B">26b </A>
Stevens AM.
Richards CJ.
Organometallics
1999,
18:
1346
<A NAME="RT78511SS-26C">26c </A>
Kirsch SF.
Overman LE.
J.
Org. Chem.
2005,
70:
2859
<A NAME="RT78511SS-26D">26d </A>
Nomura H.
Richards CJ.
Chem. Eur. J.
2007,
13:
10216
<A NAME="RT78511SS-26E">26e </A>
Kirsch SF.
Overman LE.
Watson MP.
J. Org. Chem.
2004,
69:
8101
<A NAME="RT78511SS-26F">26f </A>
Prasad RS.
Anderson CE.
Richards CJ.
Overman LE.
Organometallics
2005,
24:
77
<A NAME="RT78511SS-27">27 </A>
Menz H.
Kirsch SF.
Org. Lett.
2009,
11:
5634
<A NAME="RT78511SS-28">28 </A>
Jiang Z.-H.
Yang Q.-X.
Tanaka T.
Kouno I.
J. Nat. Prod.
2008,
71:
724
<A NAME="RT78511SS-29">29 </A>
Meragelman TL.
Scudiero DA.
Davis RE.
Staudt LM.
McCloud TG.
Cardellina JH.
Shoemaker RH.
J.
Nat. Prod.
2009,
72:
336
<A NAME="RT78511SS-30">30 </A> For a leading review, see:
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
<A NAME="RT78511SS-31">31 </A>
Neises B.
Steglich W.
Angew. Chem. Int. Ed.
1978,
17:
522
<A NAME="RT78511SS-32">32 </A>
Virolleaud M.-A.
Piva O.
Synlett
2004,
2087
<A NAME="RT78511SS-33">33 </A>
Luche JL.
J.
Am. Chem. Soc.
1978,
100:
2226
<A NAME="RT78511SS-34">34 </A>
It should be mentioned that the use
of triethylsilyl protecting groups does not show these deprotection
issues, see: ref. 24.
<A NAME="RT78511SS-35">35 </A> The syn -configuration
of 10a was shown by conversion into polyrhacitide
A (ref. 43) and comparison of the analytical data. The syn -configuration of 10b was
shown by conversion into (3R ,5R )-5-(tert -butyldimethylsiloxy)-3-(triethylsil-oxy)hexanal
and comparison of the analytical data with previously reported data:
Nicolaou KC.
Nold AL.
Milburn RR.
Schindler CS.
Cole KP.
Yamaguchi J.
J. Am. Chem. Soc.
2007,
129:
1760; cpd 22
<A NAME="RT78511SS-36A">36a </A>
Mohapatra DK.
Das PP.
Reddy DS.
Yadav JS.
Tetrahedron Lett.
2009,
50:
5941
<A NAME="RT78511SS-36B">36b </A>
Reddy DK.
Shekhar V.
Reddy TS.
Reddy SP.
Venkateswarlu Y.
Tetrahedron: Asymmetry
2009,
20:
2315
<A NAME="RT78511SS-36C">36c </A>
Allais F.
Aouhansou M.
Majira A.
Ducrot PH.
Synthesis
2010,
2787
<A NAME="RT78511SS-36D">36d </A>
Böse D.
Fernández E.
Pietruszka J.
J. Org. Chem.
2011,
76:
3463
<A NAME="RT78511SS-36E">36e </A>
Cros F.
Pelotier B.
Piva O.
Eur.
J. Org. Chem.
2010,
5063
<A NAME="RT78511SS-36F">36f </A>
Reddy DK.
Shekhar V.
Prabhakar P.
Babu BC.
Siddhardha B.
Murthy USN.
Venkateswarlu Y.
Eur. J. Med. Chem.
2010,
45:
4657
<A NAME="RT78511SS-36G">36g </A>
Reddipalli G.
Venkataiah M.
Fadnavis NW.
Tetrahedron:
Asymmetry
2010,
21:
320
<A NAME="RT78511SS-37">37 </A>
Mancuso AJ.
Huang S.-L.
Swern D.
J.
Org. Chem.
1978,
43:
2480
<A NAME="RT78511SS-38">38 </A>
It has to be noted that the isolation
of aldehyde 16 is somewhat troublesome,
and, therefore, it is recommended to use it without further purification
(see ref. 36d). Nevertheless, 16 can be
isolated and stored at -20 ˚C over weeks without
decomposition. See the experimental section and the Supporting Information
for analytical data.
<A NAME="RT78511SS-39">39 </A>
Menz H.
Ph.D. Thesis
Technische
Universität München;
Germany:
2010.
<A NAME="RT78511SS-40">40 </A>
Ando K.
J.
Org. Chem.
1998,
63:
8411
<A NAME="RT78511SS-41">41 </A>
Nelson DJ.
Cooper PJ.
Soundararajan R.
J.
Am. Chem. Soc.
1989,
111:
1414
<A NAME="RT78511SS-42">42 </A>
Duschek A.
Kirsch SF.
Angew. Chem. Int.
Ed.
2011,
50:
1524
<A NAME="RT78511SS-43">43 </A> Isolation:
Jiang Z.-H.
Yang Q.-X.
Tanaka T.
Kouno I.
J. Nat. Prod.
2008,
71:
724
For subsequent total syntheses,
see:
<A NAME="RT78511SS-44A">44a </A>
Mohapatra DK.
Bhimireddy E.
Krishnarao P.
Das PP.
Yadav JS.
Org. Lett.
2011,
13:
744
<A NAME="RT78511SS-44B">44b </A>
Ghosh S.
Rao CN.
Tetrahedron Lett.
2010,
51:
2052
<A NAME="RT78511SS-44C">44c </A>
Yadav JS.
Rajendar G.
Ganganna B.
Srihari P.
Tetrahedron
Lett.
2010,
51:
2154
<A NAME="RT78511SS-45">45 </A>
White JD.
Lincoln CM.
Yang J.
Martin WHC.
Chan DB.
J. Org. Chem.
2008,
73:
4139
<A NAME="RT78511SS-46">46 </A>
Staudinger H.
Meyer J.
Helv. Chim. Acta
1919,
2:
635
<A NAME="RT78511SS-47">47 </A> For the use of related 4-(benzyloxy)butanoyl
esters as protective groups that can be removed by hydrogenolysis, see:
Clark MA.
Ganem B.
Tetrahedron
Lett.
2000,
41:
9523
<A NAME="RT78511SS-48">48 </A>
Haug TT.
Kirsch SF.
Org. Biomol. Chem.
2010,
8:
991
<A NAME="RT78511SS-49">49 </A>
Mayer SF.
Steinreiber A.
Orru RVA.
Faber K.
J.
Org. Chem.
2002,
67:
9115